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Measurement Error Regression With Unknown Link:
Dimension Reduction and Data Visualization

RAYMOND J. CARROLL and KER-CHAU LI*

A general nonlinear regression problem is considered with measurement error in the predictors. We assume that the response is
related to an unknown linear combination of a multidimensional predictor through an unknown link function. Instead of observing
the predictor, we instead observe a surrogate with the property that its expectation is linearly related to the true predictor with
constant variance. We identify an important transformation of the surrogate variable. Using this transformed variable, we show that
if one proceeds with the usual analysis ignoring measurement error, then both ordinary least squares and sliced inverse regression
yield estimates which consistently estimate the true regression parameter, up to a constant of proportionality. We derive the asymptotic
distribution of the estimates. A simulation study is conducted applying sliced inverse regression in this context.

KEY WORDS: Data visualization; Dimension reduction; Errors in variables; Generalized linear model; Logistic regression; Sliced

inverse regression.

1. INTRODUCTION

This article explores estimation of regression coefficients
in general nonlinear models when the link function is un-
specified and the predictors are measured with error. Errors
in the regressors can cause severe bias in estimation unless
suitable adjustment has been made. For linear models, there
are many references and techniques available (see Fuller
1987). But nonlinear measurement error models have re-
ceived relatively less attention until recently (see Carroll 1989
and Carroll and Stefanski 1990 for recent reviews). This ar-
ticle will address the nonlinear case from the viewpoint of
dimension reduction and data visualization as given in Li
(1990a,b, 1991) for the regressor-error-free situation. Appli-
cations of binary measurement error models were discussed
by Carroll, Spiegelman, Lan, Bailey, and Abbott (1984),
Carroll and Wand (1991), Pepe and Fleming (1991), Pierce,
Stram, Vaeth, and Schaefer (1992), Rosner, Willett, and
Spiegelman (1989), and Tosteson, Stefanski, and Schaefer
(1989), among others.

With errors in the regressor variables, nonlinear regression
becomes much more complicated. For example, the likeli-
hood function generally involves multiple integration, and
issues of model sensitivity and robustness are not well un-
derstood. Let Y be the response, x the true predictor, and w
the observed surrogate. Likelihood analysis requires speci-
fying functional forms for the distributions of Y given x and
of x given w. Part of our goal is to reduce the necessity for
fully specifying these functional forms.

When the dimension of w is high, many techniques are
likely to break down even when the regressors are free from
error. This problem is compounded by the uncertainty in
choosing the correct form for the regression function. For
example, in binary regression, it is not clear why a logistic
or probit model is the sole choice. For a continuous response
variable, it is equally questionable to recommend a Box-
Cox transformation rather than a generalized linear model.
These issues can be addressed by assuming that the condi-
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tional distribution of the response variable Y given the pre-
dictor variable x depends on x only through a linear com-
bination of x, B'x; equivalently, for some completely
unknown link function g and a random variable ¢ indepen-
dent of x,

Y =g(a+ 8%, ¢) (1.1)

(see Brillinger 1977, 1983, Li and Duan 1989). Model (1.1)
states that Y and x are independent given 8'x. In the error-
free case, these authors found that consistent estimation of
the direction of the slope vector 8 up to a constant of pro-
portionality is possible under a key condition on the design
distribution; see (2.2) in Section 2.

Another aspect of estimating 8 proportionally is related
to the issue of dimension reduction and data visualization
as addressed by Li (1990a,b, 1991). Li (1991) formulated
this visualization problem as a dimension-reduction problem.
In his model the conditional density of Y given x depends
on x only through a small number of projected variables,

B'ix, ..., Bkx:
Y= g(ﬁ’lx, LI ’B,Kx, 8),

where 8,’s are unknown vectors and g is an arbitrary func-
tion. The problem is to find the space, the edr (effective di-
mension reduction) space, spanned by these 8’s, without
going through tedious parametric or nonparametric model-
fitting processes. Under (1.2) the projections of x along vec-
tors in the edr space contain all information about the re-
lationship between Y and x. When K equals 1, (1.2) reduces
to the usual nonlinear regression model (1.1) and the edr
space is spanned by the regression slope vector 8. Hence
estimating 8 up to a constant of proportionality is sufficient
for dimension reduction and data visualization, because a
plot of Y against the estimated variable 8'x can be quite
informative.

In this article, we shall develop techniques for estimating
the regression slope up to a constant of proportionality when
the regressor is subject to error, without knowledge of the
Sfunctional form of g. In effect, our method provides a simple,

(1.2)
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easily computed sensitivity analysis to judge the potential
effect of misspecifying a model for Y given x. The basic
technical tool is a simple linear transformation u = Lw of
w, where L = cov(x, w)Z;' and (Z,, =,) are the covariance
matrices of (x, w). We show that with this linearly trans-
formed variable u, we may proceed with the analysis as if
the errors are free in u. In particular, the usual linear least
squares method and sliced inverse regression (SIR) can be
applied to Y against u to yield a root # consistent estimate
under suitable conditions. We can interpret u as the linear
least squares prediction of x given w. When necessary, the
transformation L can be estimated from a validation sample.

In Section 2 we formulate the measurement error problem
when the link function is completely unknown. We study
the inverse regression curve; that is, the conditional mean
of the surrogate variable w given the response variable Y.
Under the design condition (2.2), we show that the inverse
regression curve degenerates to a straight line. This property
extends to the curve of the conditional mean of u given Y.
Based on the transformed regressor u and proceeding as if
the regressor were error free, we show Fisher consistency for
two methods of estimating the direction of 8: linear least
squares and the SIR estimate. Variants of SIR, like those in
Duan and Li (1991), also work, but will not be treated here.
Condition (2.2) is further discussed in Remarks 2.2 and 2.3.

In Section 3 we study the large sample properties of our
estimates. Asymptotic normality with estimable asymptotic
covariance matrices is obtained.

In Section 4 we apply the results to the problem of hy-
pothesis testing for null effects. We can test a scale-invariant
null hypothesis. In particular, we can determine which co-
ordinates of the predictor have significant effects on the re-
sponse.

In Section 5 we discuss some possible generalization of
our methods to other settings. One case involves the presence
of a stratification variable, such as sex, or district, or age, as
part of the predictor variable. We also discuss the general
dimension reduction model (1.2).

In Section 6 we address the issue of visualizing the data.
We treat this as a dimension reduction problem and argue
that in some cases it may be sufficient to plot Y against 8'u.
A simulation study is reported to demonstrate the effective-
ness of our approach.

In Section 7 we briefly indicate one way to estimate the
constant of proportionality if the link function g is known.
Section 8 contains the results of our techniques applied to a
binary regression example. The Appendix presents some
technical details.

2. BASIC THEORY

2.1 Preliminaries

In model (1.1), suppose that instead of x we can observe
only a surrogate w, which is related to x via the linear model

w=~v+Ix+4, 2.1

where T is a ¢ by p matrix, which can be known, unknown,
or partly known. We assume that § is independent of x and
¢, although this can be relaxed to 6 and Y independent given
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B'x. An important case is when p = g and T equals the
identity.

We shall present some methods of estimating 3, for p = 2,
up to a constant of proportionality without knowledge of the
functional form of g. Similar to sliced inverse regression (Li
1991), the key idea in our approach is to consider the inverse
regression curve 5(y) = E(w|Y = y). Theorem 2.1 shows
that this curve will fall on a straight line under the following
condition: For any direction b in R?, E(b'x|8'x) is linear in
B8'x; that is,

E(b'x|B'x) = ¢ + ¢;08'x

for some constants ¢,, ¢;. An important special case for (2.2)
is when the distribution of x is elliptically symmetric. But
as discussed in Li (1991), (2.2) is much weaker than elliptic
symmetry because it need be satisfied only by the vector 3.
See Remark 2.2 for more discussion.

Theorem 2.1. Under (1.1), (2.1), and (2.2), we have
n(y) = E(w|Y = y) = E(w) + c(y)TZ8,

where the scalar function c(y) equals (8'Z,8) 'E(B8'(x
— Ex)|Y = ).

(2.2)

Proof. We can assume that EFw = Ex = 0. It may be
shown that (2.2) implies that E(x|8'x) = ¢, (8'x) Z,8, where
¢1(8'x) = (8'Z,8)"'8'x. Then, by conditioning, we find that

E(w|Y)=E{E(W|8'x,Y)|Y}
= E{TE(x|8'%)|Y} = c(Y)I'Z,8,

where ¢(y) = E{c;(8'x)|Y = y}. This proves the theorem.
There are two ways to apply this theorem, as described in
Sections 2.2 and 2.3.

2.2 Linear Regression-Type Method

Suppose that a standard linear least squares regression of
Y against w is conducted:

min E(Y — a — biw)% (2.3)
b,ER,aER
Then the regression slope b, satisfies
b =ZEY(w— Ew) =cZ,'TZ,8
= (8'2:0) 'cov(B'x, Y)Z,'TZ,0. 2.4)

If g(B'x, ¢) = a + B'x + ¢, then the constant ¢ equals 1.
The proof of (2.4) follows directly from Theorem 2.1. Now
recall that

u=Lw=cov(x,w)Z,'w=3TI3Z;'w. 2.5)

Plugging (2.4) and (2.5) into the minimization problem (2.3),
we see that 8 is proportional to the solution, by, of the fol-
lowing:

min E(Y — a — b'u)?.
bERPaER

(2.6)

This result can be viewed as an extension of Brillinger (1977,
1983), when the usual linear least squares estimate was shown
to be consistent for estimating the direction of the slope vector
when the regressor variable is free of error. Li and Duan
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(1989) extended Brillinger’s result to other regression esti-
mates, including generalized linear models and M estimates.

2.3 SIR-Type Method

Because the regression curve n(y) = E(w|Y = y) falls on
a straight line, we can use the same method as SIR (Li 1991)
to suggest an estimate. It is more convenient for us to consider
the curve ¢(y) = E(u|Y = y), where u is defined by (2.5).
From Theorem 2.1 we find that

§(y) = E(u) + c(») 2.8, 2.7)

where, by (2.5), 2, = Z,I"2;! 'S, denotes the covariance
matrix of u. Thus, in terms of u, the inverse regression curve
is a straight line with the direction specified in a way exactly
the same as in the regressor-error-free case discussed by Li
(1991, Theorem 3.1). Denote the covariance matrix
cov{{(Y)} by Z;. We can find the nondegenerate direction
by applying a suitable principal component analysis, as the
following corollary suggests.

Corollary 2.1. Under the same conditions as given in
Theorem 2.1, the covariance matrix Z; has rank at most 1.
Assuming that 2 is of rank 1, let v be the nonzero eigenvector
for the eigenvalue decomposition of Z; with respect to =,:
Zv = AZ,v, where X is the nonzero eigenvalue. Then v is
proportional to 8: for some scalar ¢, v = ¢@.

Note that the eigenvalue A = E[E{B8'(x — Ex)|Y }?/
B'Z.B.

Remark 2.1. As mentioned previously, in (2.1) we re-
quire only that conditional on 8’x, the distribution of Y is
independent of 6.

Remark 2.2. Diaconis and Freedman (1984) showed that
almost all low-dimensional projections of high-dimensional
data are approximately normal. Hall and Li (1993) showed
that from a Bayesian perspective, if 8 assumes a vague prior
distribution, then as the dimensionality tends to oo, (2.2)
holds approximately with probability approaching 1. This
implies that our assumption (2.2) is realistic for many high-
dimensional data sets. On the other hand, if (2.2) is severely
violated for some direction b, then it may be difficult to
determine which direction in the space spanned by » and 8
is truly responsible for determining Y, given a realistic sample
size. Li (1990a) demonstrated how SIR can help find the
space spanned by the true direction 8 and the direction of
b for which (2.2) is most severely violated. We expect a similar
extension to our case; namely, the first two (or more, if nec-
essary) eigenvectors of SIR may help recover the most severe
nonlinearity in the design distribution.

Remark 2.3. In the regressor-error-free case, there are
some interesting methods that do not require the design con-
dition (2.2) to estimate (3 consistently up to a constant of
proportionality; see for example, the average derivative
method of Hérdle and Stoker (1989) and some variants of
projection pursuit regression as given in Hall (1989) and
Chen (1991). These methods use the property that the re-
sponse function E(Y |x) depends on x only through 8’x.
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Extension of these techniques to measurement error models
would be of interest.

Remark 2.4. A necessary and sufficient condition for
the matrix Z; to be nonzero is that cov{ #(Y), 8’x} # 0, for
some transformation 4( - ). This holds for most models where
E(Y |B’x) is strictly monotone or for heteroscedastic models
such as Y = ¢: g(8'x).

Remark 2.5. 1t is easy to see that each row of the linear
transformation L is the regression slope vector for linearly
regressing the corresponding coordinate of x against w, in-
tercept included. In particular, the regression slope for the
variable 8'x against w equals =, cov(w, x'8) = L'8. There-
fore, the variable 8'Lw = 3'u has higher correlation with 8'x
than any other linear combination of w: corr(8’x, 8'u)
= corr(B'x, b'w).

Remark 2.6. If the joint distribution of x and w is nor-
mal, we can extend the result of Li and Duan (1989) to the
error-in-regressors problem by pretending that we have ob-
served an error-free regressor u. Specifically, for any function
p(Y, 0) that is convex in 6, under (1.1) the solution (a,, b,)
of the minimization

mingerperr Ep(Y, a + b'u)

satisfies the condition that b, is proportional to 8. The proof
of this result is given in Appendix A. In fact, the normality
assumption can be weakened by assuming (2.1) and that,
conditional on 8'u, 8’x is independent of u.

3. ESTIMATION

Given an iid sample, (Y;, w;), i = 1, ..., n, we discuss
how to implement the two methods described in Section 2.
As in (2.5), define

L=2,I"2." = cov(x, w)=,'.
We distinguish among four different situations:

1. L is known.

2. L is unknown and estimated by an independent vali-
dation sample of (x, w), which is assumed to be represen-
tative in the sense that the covariance of x is the same in the
primary and validation data sets.

3. L is unknown, but p = g and T is known in (2.1), so
that L can be estimated by an independent representative
sample containing replicates of w.

4. Either independent validation or replication samples
are taken, but they are not representative because the co-
variance of x differs from that in the primary data set.

The case where L is known is important primarily to set
up the theory, although there may be situations where this
case occurs. In addition, sensitivity analyses for different L’s
may be of interest when there is no additional information
about the relationship between x and w. This case is treated
in Sections 3.1 and 3.2.

The use of validation is treated in Sections 3.3 and 3.4.
We assume there and in Sections 3.5 and 3.6 that the in-
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dependent data set is representative; one such example is
discussed by Rosner et al. (1989).

In many instances, I' may be known. This occurs especially
when w is an unbiased estimate of x, the most common case
occurring in the literature (Fuller 1987). For this important
situation, to estimate L we show in Sections 3.5 and 3.6 that
it is only necessary to have replicates w,; and w,, of x; for
some i.

The general case of possibly nonrepresentative validation
or replication is treated in Sections 3.7 and 3.8. We will
consider only the case that the replicated data set is inde-
pendent of the primary data set, although other cases are
possible.

3.1 Least Squares With Known L

If L is known, define u; = Lw;. The least squares estimate
for (2.6) is

be=27(n— 1) En: Yi(u; — u),

i=1

3.1)

where 2, = L2,,L’' is the sample covariance for u and
3w is the sample covariance of w. Root # consistency and
asymptotic normality of this estimate follows easily. Define
the ith theoretical residual after regression: ¢; = Y; — EY
— bis(u; — Eu). Then we have the expansion

b=bs+n'Y Zile(n,— Eu) + 0,(n7"). (3.2)

i=1

Clearly, by is asymptotically normal, with mean b,, defined
by (2.6) and covariance matrix

(b)) = n7'Z;'cov{e;(u; — Eu)} 2. (3.3)

3.2 SIR With Known L

The SIR-type estimate can be constructed asin Li (1991):

1. Divide the range of Y into H slices and let p, be the
proportion of Y;’s falling into the Ath slice 7,,.

2. Within each slice compute the sample mean of u, uy,
= (nﬁ;,)_lzyle“ u;, h= 1, e H.~

3. Form the covariance matrix =, = Z/_,p,(a, — u)(uy,
—u)". Then conduct an eigenvalue decomposition of f:; with
respect to the sample covariance of u, .

E;i?sm = XiubSIR,
where X is the largest eigenvalue.

The asymptotic distribution of bgr follows from argu-
ments similar to Li (1991) or Duan and Li (1991) for fixed
H, and arguments similar to Hsing and Carroll (1992) for
H = n/2. The fixed H case is given in detail in Theorem 3.1
below.

Due to the affine invariance, we can without loss of gen-
erality assume that Ew = 0. Recall the definition of ¢(y)
from Theorem 2.1 and define k = [E{c(Y)|YE L,}, ...,
E{c(Y)IYEIL}) =(ki, ... Lky), U= (u,,...,uy),and
D = a diagonal matrix with diagonal elements p,, . . ., pu.
Then by the law of large numbers, the ¢ by H matrix U

043

converges to EU = 2,8k’ (more precisely, the exgectatiqn
is conditional on p, # 0) at root n rate. Let A, = U — EU.
Then

2= (EU+ A)D(EU + A,
= k'DkZ,88'Z, + ADKB'E, + Z,8KDA, + 0,(n7")
= k'Dk{Z,8 + (k'Dk)~'A,Dk }
X {Z,8 + (k'Dk)'A Dk} + O,(n7"). (3.4)

It follows immediately that the largest eigenvector by is ap-
proximately proportional to

SaU(K'DKZB + ADK). (3.5)

We can relate (3.5) to the least squares apgroximation
(3.2) by considering the transformed variables Y; = k, if Y;
falls in the Ath slice; that is,

H
Y= 3 t(idkn;  Ea(i) = I(Y; € hth slice).
h=1

A straightforward derivation as outlined in Appendix B
shows that (3.5) can be approximated by

Zan7t Y Y, — ),

=1

(3.6)

which would be equal to (3.1) approximately if we had trans-
formed Y; to Y;. Therefore, we can apply (3.2) to our case
with ¢; replaced by é = Y, — EY, — bj;:(v; — Eu), where bg;
is the regression slope of Y against u. Because (3.5) converges
to k'DkB, we see that

bsir = k,Dkﬂ (37)

There is a slight ambiguity for the definition of the eigen-
vector by, in Step 3, because any nonzero multiple of an
eigenvector is also an eivenvector. Because we are using
b;: to estimate the direction of 8, it does not matter which
version is used.

Theorem 3.1. Under the same conditions as given in
Theorem 2.1, the estimate b, is root n consistent in esti-
mating the direction of 8. Moreover, there exists a version
of by, that is asymptotically normal with mean by, given by
(3.7) and covariance matrix

S(bg) = n7'Z;' cov{éi(u; — Eu)} =,

Remark 3.1. We can choose the version Bsir with unit
length (with respect to =, or the identity matrix, for example)
and the largest coordinate value of which is positive. The
asymptotic distribution for this version can be easily derived
from Theorem 3.1 and the following lemma, which is proved
in Appendix C.

Lemma 3.1. For any sequence of random vectors, z;,
such that n'/?(z; — u) converges to a normal with mean
vector 0 and covariance matrix Z, the sequence of normal-
ized random vectors n'/%(z;/ |z;| ™' — u/ lnl) converges to
a normal distribution with mean 0 and asymptotic covari-
ance matrix ||u|| > P,=P,, where P, is the projection matrix
I = (llel)ppe.
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3.3 Least Squares With Unknown L:
Representative Validation

Most often, L is unknown and has to be estimated. In this
section we consider the use of an independent external val-
idation sample of size m; that is, an independent data set
consisting of the measurements (x;, w;),i=n+1,...,n
+ mi. Typically, m is smaller than n. We will assume for this
purpose that x has the same covariance in the primary as
well as the validation data; the case that it does not is covered
in Section 3.7.

We now study the effect on our estimates in (3.1) due to
the uncertainty from estimating L. We consider the estimate
of L defined by

I = éov(x, w)23!, (3.8)

where @(x, w) is the sample covariance between x and w
and 2,, is the sample covariance of w, all based on the val-
idation sample (x;, w;), i=n+1,..., n + m. Each row of
L is the usual least squares regression slope of the corre-
sponding coordinate of x against w.

Denote @, = Lw, fori = 1, . . ., n and define the associated
sample covariance

2. =L%,L" (3.9)

We shall replace u,’s by ;s in constructing our estimates.
The resulting estimates of 8 will be denoted by by and by

The least squares estimate by is obtained from (3.1) by
replacing u; by a;:

2t (n=-17! é Y,(d; — 1),

i=1

Bls =

where a denotes the sample mean of @i;’s. A standard ex-
pansion shows that, no matter how L is estimated,
i)ls -

bls = E;ln_l Z (ll,' - Eu)e,»

i=1
— ZJLEW(L — LYbs+ Op)(n~" + m™).
Now let

(3.10)

Arwi = (l',' - Eri)(wi - EW)’

A standard expansion for least squares gives

r=x;,—w=X;,— Lw;

n+m
L-L=m" 3 AwmZy' +0,(m™).

i=n+1

(3.11)

Hence we obtain the expansion
R n+m
by=bs—m"' ¥ Zi'LAwibs

i=n+1

+ 20! % (u; — Eu)e; + O,(m™"). (3.12)

i=1

Note that the last two terms are independent. It is now clear
that by is consistent. Compared with (3.2), we see that the
cost of estimating L is the presence of the second term in
(3.12) from the validation sample.

Journal of the American Statistical Association, December 1992
Theorem 3.2. The asymptotic covariance matrix of b
is given by
2(by) = cov{I(bs)} + =2(by),
where () is given by (3.3) and
cov{I(bs)} = m'cov{Z,'(w; — Eu)(r; — Er;)bis}.

3.4 SIR With Unknown L: Representative
Validation

After estimating L by L, the SIR-type estimate can be
carried out in the same way as described in Section 3.2. The
matrix 2; will be replaced by

2 =L2L, (3.13)
where

2, =

M=

On(Wn — W) (W — W), (3.14)

h

and where Wy, is the slice mean for w, (np,) ™" 2vy,er, Wi. The
maximum eigenvector of the eigenvalue decomposition 2"2;
with respect to £, [see (3.9)] is our estimate bg,. We shall
find the asymptotic distribution for by, as follows.

First, following the same derivation as the one that leads
to (3.4), we obtain

2, = kK'Dk{I'Z,8 + (k'Dk)'A,Dk}
X {TZ,8 + (k'Dk)~'A,Dk},

where A, = (W, — EWy, ..., Wy — Ewy). Based on this,
from (3.13) we aApproximate 2, and find that one version of
the eigenvector by, approximately equals

bg = £;'L(k'Dk- T'Z,8 + A,Dk). (3.15)
Following an argument similar to (A.2), we can approximate
(3.15) by

M (n—1)" i Yi(d; — ).

i=1

(3.16)

Comparing (3.16) with (3.12), we see that, asymptotically,
by would be equivalent to the least squares estimate of Sec-
tion 3.3 if we had transformed Y, to Y;. Hence we can apply
Theorem 3.2 to obtain the asymptotic distribution of by;.

Theorem 3.3. There exists a version of by, with the
asymptotic mean bg;, given by (3.7) and the covariance matrix

E(Bsir) = COV{I(bsir)} + E(bsir),

where E(i)si,) is given in Theorem 3.1, and cov {I(bg)} is
the same as the term cov { I(b,) } given in Theorem 3.2, with
by replaced by b;;.

Remark 3.2. Note that the term cov{I(bg,)} (respec-
tively, cov { I(bys) }) is the asymptotic covariance matrix for
the estimated slope when we regress bg x (respectively,
bisx) against u based on the validation sample, if by, (re-
spectively, b;;) were known. Thus the additional uncertainty
in our estimate due to estimating L is easy to assess. This
information may be particularly useful in planning of the
sample sizes m and n.
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Remark 3.3.  In Theorem 3.3 we assumed that the slices
are fixed. In practice it is more convenient to choose ap-
proximately the same number of observations for each slice,
unless Y is discrete. This makes our procedure invariant un-
der monotone transformations of Y. The case where H in-
creases as the sample size increases (in particular two obser-
vations per slice) can be treated using the methods of Hsing
and Carroll (1992).

3.5 Least Squares With Unknown L:
Representative Replication

An important special case occurs when T is known and p
= g. Without loss we will take I' = I, in which case w is an
unbiased surrogate for x. In many experiments, instead of
validation we will have a replicated data set; that is,

w,~,=a+x,~+6ij~,

ji=12; i=n+1,...,n+m. (3.17)

If Z; is the covariance of §;, then we find that L = [
— 3:=.'. Define 2; and 2,, — (1/2)Z; to be the sample co-
variance matrices of (w;; — w;2)/2'/? and (w;; + w;,)/2 and
define

L=1-%3;". (3.18)

Then, while we prefer the method of Section 3.7, all the
results of Section 3.3 hold if we replace A,,; by

Ai = (‘—11)[252;'{(%. + Wi — 2EW)(W,| + Wi» — 2EW)’]

+ (2,235 — 2D (Wi — wi2)(wiy — Wiz)'] . (3.19)

3.6 SIR With Unknown L: Representative
Replication

In the replication model (3.17), with the estimate (3.18),
the results of Section 3.4 go through with the only change
that A,; is replaced by (3.19).

3.7 Least Squares With Unknown L: General Case

Formula (2.5) refers to the primary sample. In many
problems the classical additive measurement error model
(2.1) can be assumed to hold both for the primary and the
validation /replication data sets, with the same values of (v,

' T) and the covariance matrix of §; see Carroll (1989) for
discussion. But there are important instances where the
marginal distribution of x is not the same in the primary
and validation/replication data sets, in which case adjust-
ments must be made. Thus we will estimate (I', Z;) from
the validation /replication data sets and then use the primary
data set to estimate Z,.

Assume that Q@ = I'T'is of full rank. Then =, = Q7 'T"(Z,,
— 3,)TQ " If T is unknown, let I' be the least squares es-
timate; otherwise, set I' = T'. Let £; be an estimate of =;,
which we will assume to have the expansion

n+m
25 - 25 = m_' 2 A+ 0p(m").

1=n+1
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In the case of validation, A; = §;67 — Z;. For replication, A,
= 6,'*6:'* — X5, where 6,'* = (W[l - w,-z)/21/2.

Now define L = Z,0'27}, where £, = Q7'I"(2,.
—3)IQ " Fori =1, ..., ndefine 5; = (w; — Ew)(w;
—Ew) —2,,[;=Q7'I's,TQ'I'S,' — Ls;Z," and

04, = E;'{(ui - Ell)ei - szl;bls}

Fori=n+1,..., n+ m, under replication with I" = I
define B, = 0; for validation define B, = ;' (x; — Ex)8.
Further define

7 =(—Q7'"ATQ'IY + 3,B;

— Q"B - 3, B, TQ T2}
and A; = 2; 'L, 7ib,. Then calculations outlined in Ap-
pendix D show that

n+m

bs—bs=n"'2 A +m Y A

i=1 i=n+1

+0,(n" +m™). (3.20)

Equation (3.20) allows us to state the following result:

Theorem 3.4. by is asymptotically normally distributed
with mean by, and covariance matrix

n~lcov(A;) + m™cov(Anim).
3.8 SIR With Unknown L: General Case

This may be treated in the same way as in Section 3.7,
replace by by b and replace Y; by Y;.

4. STATISTICAL INFERENCE

We shall show how to apply the results of Section 3 to
hypothesis testing for null effects. Hypothesis testing has not
been much discussed in the nonlinear measurement error
model literature. An exception is the case of testing for a
simultaneous null effect in all components of x measured
with error, where score test ideas can be used (see Stefanski
and Carroll 1990; Tosteson and Tsiatis 1988). These methods
do not apply for testing components of x which are measured
precisely; see Carroll (1989) for examples. We can handle
such problems using the techniques presented in Section 3.

Consider the hypothesis testing problem of the form

Hy MB=0 vs. H;: MB#O0,

(3.21)

where M is a given r by p matrix of rank r < p. For instance,
if we take M = (1,0, ..., 0), then r = 1 and we are testing
whether or not the first variable in x affects the response Y.
Let 8 denote any estimator constructed in Section 3. To
construct a Wald test for the hypothesis, we need a consistent
estimate 2(8) of =(B), the asymptotic covariance of 8. For
the least squares estimates of Sections 3.1, 3.3, 3.5, and 3.7,
consistent estimation of () is easy: just substitute popu-
lation quantities by their estimates. The only point that needs
a little special care is that in going from the population ver-
sions to sample versions, terms of the form w;; — w;, should
be replaced by w;; — wio — m™ 2 (Wip — W),

For the SIR estimates of Sections 3.2, 3.4, 3.6, and 3.8,
the same technique works once one estimates the vector k
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= (ky, ..., ky). To do this, multiply both sides of (2.7) by
B’, so that

c(y) = (B'Z.B8)"'8'{§(») — E(w)},

from which it follows that k, = E{c(Y)|Y € I}
=(8'Z.8)"'8 {Eu, — E(u)}. Hence we can estimate k; by

i(h = (Elsirﬁubsir)_li)lsir(ﬁh - 6),

where @i, denotes the Ath slice mean for @,’s. It is also
easy to see that k'Dk can be estimated by k'Dk
= X(Blsiriul;sir)_l'

The Wald test at level « rejects the hypothesis if

BM {MEB)M'} ' MB > xi(1 — @),

where X?(1 — «) is the appropriate percentage point of the
chi-squared random variable with r degrees of freedom.

5. GENERALIZATIONS

The method based on SIR is easy to generalize to other
settings. First, instead of (1.1) we may consider a model

Y=g(a+p8%,T,e),

where T is a stratification variable such as sex or age group,
so that g can be an arbitrary function with three arguments.
We assume that the design distribution satisfies the linear
conditional expectation condition (2.2) after conditioning
on T; namely, for any direction b in R?, there are functions
of T, co(T), c;(T), such that

E(b'x[8'%, T) = co(T) + ci(T)B'x.

It is clear that the inverse regression curves, n(y|T) = E(w|Y
=y, T)and {(y|T) = E(u|Y = y, T), still have the same
property as given in Theorem 2.1 and (2.7):

n(y|T)=Em|T)+ c(y|T)Zu 18, 2.7

where c(y|T) = (8'Zx78) "' E(8'(x — Ex)|Y = y, T) and
2, r1s the conditional covariance of x given T'. Thus, when
creating slices, we need to use both Y and 7". We can estimate
B from each stratum of T and then combine the estimates.

Under the additional assumption that =,,r does not de-
pend on T, we can combine the estimate of the covariance
=, from each stratum:

Z Z ﬁh,t(ﬁh,t - ‘_lt)(l_lh,t -u),
t h

where pj,, is the proportion of the cases falling into slice &
at stratum T = ¢, u,, is the sample average of u for 7 = ¢
and slice /4, and u, is the sample average of u for 7= ¢. Then
we can estimate 8 by the largest eigenvector of this matrix
with respect to Z, as before. The asymptotic property will
be similar to what was discussed earlier. The result of Hsing
and Carroll (1992) can be used to justify the consistency
property of the resulting estimate even if the number of cases
per slice is small.

Another generalization is to consider the K component
model (1.2). We can use the largest K eigenvectors of SIR
(Step 3 of Section 3.2) to estimate the space spanned by the
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B#’s. We can justify our method based on the generalization
of (2.7): n(y) — E(u) falls into the space spanned by Z,8,,

., ZuPBk. The proof of this result follows along the same
lines as the proof of Theorem 3.1 of Li (1991), incorporating
the crucial property that E(6|Y = y, x) = E(8) = 0 as used
in the proof of our Theorem 2.1.

6. DATA VISUALIZATION

Quite often a visual inspection of the data can lead to a
suitable follow-up analysis, such as suggesting the functional
form of gin (1.1), the detection of outliers, clustering analysis,
and heterogeneity. When regressors are error free, one ap-
proach to visualizing regression data is based on regression
diagnostics (Cook and Weisberg 1989). Alternatively, Li
(1990a, 1990b, 1991) formed a framework for addressing
this visualization issue, based on dimension reduction theory.
He suggested SIR and several versions of principle Hessian
direction (pHd) (Li 1990b) for accomplishing this goal.

When regressors are subject to error, even when x and w
are scalar, plots of Y against w might give misleading infor-
mation about the regression slope (or functions) of Y against
x (Fuller 1987; Spiegelman 1986). This can be the case even
if the measurement error is small (Carroll and Stefanski
1990). Despite these possibilities, in many instances curva-
ture in E(Y |w) does reflect curvature in E(Y |x), and plot-
ting Y against w may still be valuable. This section presents
a theory for informatively visualizing the data when regres-
sors are subject to error.

When x is observable, the best viewing angle is 8'x under
(1.1). But because x is not available, we can at best find a
projection on w so that the projected variable has the highest
correlation with 8'x to ensure the best viewing angle obtain-
able from w; that is, the one closest to the best view from x.
From Remark 2.4 at the end of Section 2, we see that 8'u,
or its scalar multiple, is the desired variable. Because we can
estimate the direction of 8 by 8, which denotes any estimate
obtained earlier, we suggest plotting Y against 8'u. If the
correlation between 3'x and 8'u is high, then our plot may
be useful—for instance, in suggesting the appropriate func-
tional form in (1.1). When a validation sample of (x, w) is
available, we can use it to estimate corr(8'x, 8'u) by con-
sidering the sample correlation between 8'x and 8'u.

The following is a simulation example to see how effective
our method is. We consider two models for generating the
data:

Y = (a+ B8 +e¢)? 6.1)

and

Y =(a+B%x)+e 6.2)

The first model falls into the Box—Cox transformation family;
for the second model the transformation is taken only for
the mean response function, a special case of a “transform-
both-sides” model considered by Carroll and Ruppert (1988;
cf. our Remark 6.1). The coordinates of x and ¢ are inde-
pendent standard normal random variables. We set the di-
mension parameters as p = 6 = ¢, the primary sample size
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Table 1. Summary of b, = (b;, . . ., be) for Model (6.1)
Number of slices b, b, by by bs bs cos(x) corr(w)
5 571 .567 .569 .001 —.002 .007 .986 .986
(.069) (.059) (.059) (.075) (.071) (:079) [.949] [.950]
10 571 .568 570 —-.002 —.005 .004 .987 .988
(.067) (.052) (.058) (.069) (.070) (.077) [.959] [.959]
20 571 .569 .568 .005 —.005 .006 .986 .987
(.066) (.054) (.062) (.073) (.067) (.078) [.950] [.949]
NOTE: Standard deviation and minimum are in parentheses and brackets.
as n = 200, the validation sample size as m = 100, and 8 —.09, —.01)’ for model (6.1) and (—.57, —.58, —.56, .04,

=(1,1,1,0,0,0), « = 4. The relationship between w and
x will be governed by the linear model (2.1), withp = g = 6,
I' = I. The distribution of é is normal with mean 0 and
covariance being a diagonal matrix with diagonal element
©, 1/3, 1/3, 1/3, 1/3, 1/3). Thus each coordinate of x,
except for the first one, is contaminated by an error of a size
equal to .577 of its standard deviation.

Because our procedure does not require knowledge of the
functional form that generates the data, we can apply it to
both (6.1) and (6.2). After 100 simulation runs, we sum-
marize the results for b, in Tables 1 and 2. Because we are
interested only in estimating the direction of 3, we have
standardized our estimate to have unit length. For each
model the mean of by, is very close to the theoretical value
(.577, .57, .577, 0, 0, 0)' = 8/1I8ll. This demonstrates that
our procedure can avoid the bias that one normally would
expect to see without proper model specification. For in-
stance, the naive estimate of regressing the square root of Y
against w for data generated by (6.1) gives the slope (1, .75,
.75, 0, 0. 0)’ on average, which is not proportional to 8. The
standard deviation of our estimate is reasonably small com-
pared, for instance, to the ideal value of .07 ~ 1/\/— the
standard deviation of the least squares estimate for 8 under
(6.1) if the square transformation were known and if x were
observed without errors. The cosine of the angle between
bg: and B, which is the same as the correlation coefficient
between bl x and B8'x, is very close to 1, with the lowest
value in the neighborhood of .95; see the next to the last
column in each table. We considered three choices of the
number of slices H = 5, 10, 20, with an equal number of
observation per slice. This illustrates the stability of our pro-
cedure in regard to the change in H at least for this example.

Now to demonstrate the application of our method to
data visualization, a single additional run is taken. For this
realization, we found that by, = (—.54, —.64, —.53, —.03,

Table 2. Summary of by, = (bs, . . .,

—.03, —.00)' for model (6.2). The estimate of the transfor-
mation L is as follows: ‘

1.00 .000 .000  .000 .000 .000
077 765 .030 .104 .012 .023
.038 —.006 785 .013  .013 —.020
012 015 .048 760 —.048  .107
059 —-.0619 —.044 —.063 .704 —.047
.037 —-.010 -—-.059 .065 .046 .747

Then we compute b, = (Lbg)'w;fori=1,...,n. The
scatterplots of Y, against b’;4; are given in Figures 1 and 4,
for models (6.1) and (6.2). These plots suggest that analysis
based on transformation is reasonable to pursue further.

In Figures 2 and 5 we plot Y, against 8'u;, the best view
on Y from the surrogate variable if L and 8 were known.
Compared to what we had seen in Figures 1 and 4, we see
that very little has been lost due to the estimation. The cor-
relation between the variable 8'u and our estimated variable
B'u is as high as .99. The last column in each of Tables 1
and 2 gives the mean and the lowest possible value of this
correlation over the same 100 simulation runs done earlier.
The lowest number is still as high as .95. This suggests that
approximately the same view would be obtained from other
simulation runs.

We also provide plots of Y; against 8'x, in Figures 3 and
6, the best view of the models from the uncontaminated
regressor. We find that the views obtained by our estimate,
Figures | and 4, are also very close to these best views. This
can be attributed to the fact that for our parameter setting,
despite the apparent heavy contamination rate, the corre-
lation between 8'x and B'u is high, equaling to about .91.
Figures 3 and 6 are supposed to be close to Figures 2 and 5,

be)' for Model (6.2)

Number of slices b, b, by b, bs be cos(x) corr(w)
5 .569 573 571 .007 .000 .002 .989 .990

(.059) (.047) (.053) (.060) (.072) (.067) [.968] [971]
10 573 .571 572 .005 —.001 .004 .990 .991

(.060) (.045) (.051) (.057) (.065) (.062) [.974] [.972]
20 .570 573 573 .006 —.004 .003 .990 .991

(.059) (.045) (.053) (.057) (.064) (.061) [.970] [.968]

NOTE: Standard deviation and minimum are in parentheses and brackets.
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Figure 1. SIR’s View for Model (6.1).

which in turn have been shown to be similar to Figures 1
and 4.

If we have a small number of additional data points avail-
able on (Y, x), then we can plot Y against 8'x as well. To
illustrate this, we generate 10 new data points for (Y, x)
from (6.2). The plot is given in Figure 7, which shows a
quadratic trend well.

Remark 6.1. Carroll and Ruppert (1988) considered the
transform-both-sides model, which allows another transfor-
mation on Y before getting a model like (6.2). Because our
procedure is invariant under the monotone transformation,
we would have obtained the same estimate if our data had
been given after applying any unknown monotone transfor-
mation to Y in model (6.2).

Remark 6.2. When studying the plot of Y; against
b, it is worthwhile to pay some attention to the inverse
regression curve; namely, smoothing b/.#i; against Y;. This
is because from Theorem 2.1, the curve E(B'u|Y = y) is an
affine transformation of the curve E(8'x|Y = y). This curve
is particularly helpful if the data are indeed generated from
a model Y = g(B8'x) + ¢, with the standard deviation of ¢
being small enough so that we can approximate E(8'x|Y
= y) by g7 !(y). The smoothed inverse regression curve is
expected to be close to the inverse of g. We can use the
inverse of the smoothed inverse regression curve to suggest
a suitable functional form for g.

Remark 6.3. If a were set at 0, then we cannot estimate
the direction of 8 well because the theoretical inverse regres-
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Figure 2. Best View for (6.1) From w.
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Y

et

Figure 3. Best View on (6.1) From x.

sion curve will degenerate to a point. Similar to the regressor-
error-free case, there are several variants of second-moment-
based SIR or pHd methods (Li 1990b) available for remedy.

7. THE CONSTANT OF PROPORTIONALITY

As mentioned previously, when g is completely unknown
we can at most identify 8 up to a constant of proportionality.
We could use the data visualization technique as discussed
in Section 6 for suggesting a reasonable functional form. On
the other hand, if g is given, then we shall discuss how to
estimate the entire 8 based on the reduced data.

Let 8 be the vector to which any of our estimates § con-
structed in Section 3 converges. We have shown that v8 = 8
for some constant v. Let z = 8'x. Then we can write (1. 1)
asY = g(a + vz, ¢). Our job now is to estimate («, ). Let
7 = B'u. As discussed in Section 6, 7 is in a sense most
informative in predicting z. We can consider 7 to be the
surrogate for z. If § were estimated without error, then based
on the primary sample (Y;, 7;), i =1, ..., n and the vali-
dation sample (z;, 7;), i =n+ 1, ..., n + m, where 7;
= B'y; and z; = B'x;, we could apply many available tech-
niques, such as the parametric method of Carroll et al. (1984),
the semiparametric method of Stefanski and Carroll (1987),
the small measurement error asymptotics of Stefanski and
Carroll (1990), and the nonparametric kernel regression
method of Carroll and Wand (1990). We suggest that after
estimating 8 by B, we construct 7; = 8'4; and z; = £'x; to
replace 7;, z; and apply any of these methods. Further work
on this suggestion is necessary.

Figure 4. SIR’s View for Model (6.2).
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Y

Figure 5. Best View for (6.2) From w.

8. EXAMPLE

We have access to a restricted data set containing breast
cancer incidence Y and x = (age, body mass, nutrient intake),
the latter in this case being the logarithm of saturated fat.
The primary data set was of size n = 2,800, and the validation
data were of size m = 650. The fallible version of nutrient
intake was assessed in the study by an interview detailing
the previous day’s diet; the version of truth used here was
the average of three such interviews. The measurement error
is quite large, with fully more than 50% of the observed vari-
ability in fat in error. All measurement error analyses of
these data performed previously have shown a large age effect
and a negligible body mass effect. Some analyses show a
significant effect due to the nutrient intake, and others do
not; in all cases, the coefficient has been negative. For pur-
poses of this numerical illustration, we will assume repre-
sentative validation. Full details will be provided elsewhere.
If for no other reason that there were only 59 reported cases
of breast cancer in this study, the results should be treated
with extreme caution.

Programming the methods discussed in this article is very
easy. This is particularly the case for binary regression, be-
cause the least squares and SIR methods discussed in Section
3 yield identical estimates of 8, in terms of unit length. In
this example the ordinary logistic regression estimate of unit
length obtained from regressing Y on w was (.97, —.12, —.20),
with two-sided significance levels (.00, .68, .06). Our methods
yielded estimates (.87, —.14, —.47), with two-sided signifi-

iy

Figure 6. Best View for (6.2) From x.
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Figure 7. SIR’s View for (6.2) From New (y, x).

cance levels (.00, .64, .02). Note that this measurement error
analysis yielded a larger estimated relative effect due to the
nutrient than did the ordinary logistic regression. The dif-
ference in statistical significance for the saturated fat coef-
ficient may be due to the use of information standard errors
for the ordinary logistic analysis; an analysis using M esti-
mator techniques to construct standard errors yielded lower
significance levels. For example, if we assume that given ob-
served fat, the true fat is independent of age and body mass
(checked by a linear regression analysis), then the method
of Rosner et al. (1989) applied to these data yielded estimates
(.91, —.11, —.40) and significance levels (.00, .64, .01).

APPENDIX A: PROOF OF FISHER CONSISTENCY IN
CONVEX REGRESSION, REMARK 2.6

We use the conditional argument similar to that for the proof of
Theorem 2.1 in Li and Duan (1989). For any b € R?, by Jensen’s
inequality we shall have

Ep(Y, a+ bu) = E[E{p(Y, a+ bu)|B'x,¢, Bu}]
= E[p{Y, a+ E(b'u|B'x,B)}]
= E[p{Y,a+ E(bu|B)}]
= E{p(Y,a+ ¢+ c:8)},

for some real numbers ¢y, ;.

Here the second to last equality is due to the fact that given §'u, u
is independent of 8x, a consequence of the joint normality of x
and w. It is now clear that a minimizer can be found along the
direction of 8, proving our claim.

APPENDIX B: APPROXIMATION OF (3.5) BY (3.6)

Recall that A, = U — EU. The term inside the parentheses of
(3.5) can be written as

M=z

Uﬁk = ﬁhk},l_lh = n_' E ?,llj.
=1

h

Comparing this with (3.6), it remains to show that (n™' 27, Y,)u
is of the order O,(n™"). But this follows directly from our assumption
that Eu = LEw = 0 and the fact that

H
EY;= 3 prkn= Ec(Y) =0,
h=1

where the last equality follows from Theorem 2.1.
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APPENDIX C: PROOF OF LEMMA 3.1

Let z; = u + e;. Then it follows that

Zi [ & pip e

T T T T ST + 0)(n7'?) =
Nzl el lell el v

It is now easy to see that Lemma 3.1 holds.

APPENDIX D: PROOF OF (3.20)

P, 2€;

+ o0,(n"1?%).
771

Define

A=(Q' -9 H(Z, - =)I!
-2 (Q - Q)2+ 0y(n7Y),
B=Q Y(I'-D)(E, - Z)re ' = o (I - nNT=,,

and
A+ B=-07'T'(F = D)2, + O0,(n7").
Then
25— 2k=(A+B)+(4+B)+ Q9 'T"Z, - Z,)TQ™!
-Q7'r(3; - Z)re
Hence
L-L

[{(A4+B)+ 4+ B)}I"+ 7', — =,)FQ"'I"
- Q7IM(E; - )M ' + (I -1y

- ExI‘,E;I(EIW - Ew)]zal
n+m

Rty h4+mt Y 4+ Oy(nt +mY).

i=1 i=n+1

The proof now follows from (3.10).

[Received October 1990. Revised December 1991.]
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