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Measurement Error Regression With Unknown Link: 
Dimension Reduction and Data Visualization 

RAYMOND J. CARROLL and KER-CHAU Ll* 

A general nonlinear regression problem is considered with measurement error in the predictors. We assume that the response is 
related to an unknown linear combination of a multidimensional predictor through an unknown link function. Instead of observing 
the predictor, we instead observe a surrogate with the property that its expectation is linearly related to the true predictor with 
constant variance. We identify an important transformation of the surrogate variable. Using this transformed variable, we show that 
if one proceeds with the usual analysis ignoring measurement error, then both ordinary least squares and sliced inverse regression 
yield estimates which consistently estimate the true regression parameter, up to a constant of proportionality. We derive the asymptotic 
distribution of the estimates. A simulation study is conducted applying sliced inverse regression in this context. 

KEY WORDS: Data visualization; Dimension reduction; Errors in variables; Generalized linear model; Logistic regression; Sliced 
inverse regression. 

I. INTRODUCTION 

This article explores estimation of regression coefficients 
in general nonlinear models when the link function is un- 
specified and the predictors are measured with error. Errors 
in the regressors can cause severe bias in estimation unless 
suitable adjustment has been made. For linear models, there 
are many references and techniques available (see Fuller 
1987). But nonlinear measurement error models have re- 
ceived relatively less attention until recently (see Carroll 1989 
and Carroll and Stefanski 1990 for recent reviews). This ar- 
ticle will address the nonlinear case from the viewpoint of 
dimension reduction and data visualization as given in Li 
(1990a,b, 199 1) for the regressor-error-free situation. Appli- 
cations of binary measurement error models were discussed 
by Carroll, Spiegelman, Lan, Bailey, and Abbott (1984), 
Carroll and Wand (1 99 l), Pepe and Fleming (1 99 l) ,  Pierce, 
Stram, Vaeth, and Schaefer (1992), Rosner, Willett, and 
Spiegelman (1989), and Tosteson, Stefanski, and Schaefer 
(1989), among others. 

With errors in the regressor variables, nonlinear regression 
becomes much more complicated. For example, the likeli- 
hood function generally involves multiple integration, and 
issues of model sensitivity and robustness are not well un- 
derstood. Let Y be the response, x the true predictor, and w 
the observed surrogate. Likelihood analysis requires speci- 
fying functional forms for the distributions of Y given x and 
of x given w .  Part of our goal is to reduce the necessity for 
fully specifying these functional forms. 

When the dimension of w is high, many techniques are 
likely to break down even when the regressors are free from 
error. This problem is compounded by the uncertainty in 
choosing the correct form for the regression function. For 
example, in binary regression, it is not clear why a logistic 
or probit model is the sole choice. For a continuous response 
variable, it is equally questionable to recommend a Box- 
Cox transformation rather than a generalized linear model. 
These issues can be addressed by assuming that the condi- 
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tional distribution of the response variable Y given the pre- 
dictor variable x depends on x only through a linear com- 
bination of x, B'x; equivalently, for some completely 
unknown link function and a random indepen-
dent of x, 

Y = g(a + B'x, E )  (1.1) 

(see Brillinger 1977, 1983, Li and Duan 1989). Model (1.1) 
states that Y and x are independent given B'x. In the error- 
free case, these authors found that consistent estimation of 
the direction of the slope vector B up to a constant of pro- 
portionality is possible under a key condition on the design 
distribution; see (2.2) in Section 2. 

Another aspect of estimating B proportionally is related 
to the issue of dimension reduction and data visualization 
as addressed by Li (1990a,b, 1991). Li (1991) formulated 
this visualization problem as a dimension-reduction problem. 
In his model the conditional density of Y given x depends 
on x only through a small number of projected variables, 
B',x,. . . ,Bkx: 

Y = g(B;x, . . . ,Bkx, &), (1.2) 

where Bk7s are unknown vectors and g is an arbitrary func- 
tion. The problem is to find the space, the edr (effective di- 
mension reduction) space, spanned by these B's, without 
going through tedious parametric or nonparametric model- 
jttingprocesses. Under (1.2) the projections of x along vec- 
tors in the edr space contain all information about the re- 
lationship between Y and x. When K equals 1, (1.2) reduces 
to the usual nonlinear regression model (1.1) and the edr 
space is spanned by the regression slope vector B. Hence 
estimating up to a constant of proportionality is sufficient 
for dimension reduction and data visualization, because a 
plot of Y against the estimated variable B'x can be quite 
informative. 

In this article, we shall develop techniques for estimating 
the regression slope up to a constant of proportionality when 
the regressor is subject to error, without knowledge of the 
functional form ofg. In effect, our method provides a simple, 
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easily computed sensitivity analysis to judge the potential 
effect of misspecifying a model for Y given x. The basic 
technical tool is a simple linear transformation u = Lw of 
w, where L = cov(x, w)Z;I and (Z,, Z,) are thecovariance 
matrices of (x, w). We show that with this linearly trans- 
formed variable u, we may proceed with the analysis as if 
the errors are free in u. In particular, the usual linear least 
squares method and sliced inverse regression (SIR) can be 
applied to Y against u to yield a root n consistent estimate 
under suitable conditions. We can interpret u as the linear 
least squares prediction of x given w. When necessary, the 
transformation L can be estimated from a validation sample. 

In Section 2 we formulate the measurement error problem 
when the link function is completely unknown. We study 
the inverse regression curve; that is, the conditional mean 
of the surrogate variable w given the response variable Y. 
Under the design condition (2.2), we show that the inverse 
regression curve degenerates to a straight line. This property 
extends to the curve of the conditional mean of u given Y. 
Based on the transformed regressor u and proceeding as if 
the regressor were error free, we show Fisher consistency for 
two methods of estimating the direction of P: linear least 
squares and the SIR estimate. Variants of SIR, like those in 
Duan and Li (1 99 l) ,  also work, but will not be treated here. 
Condition (2.2) is further discussed in Remarks 2.2 and 2.3. 

In Section 3 we study the large sample properties of our 
estimates. Asymptotic normality with estimable asymptotic 
covariance matrices is obtained. 

In Section 4 we apply the results to the problem of hy- 
pothesis testing for null effects. We can test a scale-invariant 
null hypothesis. In particular, we can determine which co- 
ordinates of the predictor have significant effects on the re- 
sponse. 

In Section 5 we discuss some possible generalization of 
our methods to other settings. One case involves the presence 
of a stratification variable, such as sex, or district, or age, as 
part of the predictor variable. We also discuss the general 
dimension reduction model (1.2). 

In Section 6 we address the issue of visualizing the data. 
We treat this as a dimension reduction problem and argue 
that in some cases it may be sufficient to plot Y against P'u. 
A simulation study is reported to demonstrate the effective- 
ness of our approach. 

In Section 7 we briefly indicate one way to estimate the 
constant of proportionality if the link function g is known. 
Section 8 contains the results of our techniques applied to a 
binary regression example. The Appendix presents some 
technical details. 

2.  BASIC THEORY 

2.1 Preliminaries 

In model (1. l ) ,  suppose that instead of x we can observe 
only a surrogate w ,which is related to x via the linear model 

where r is a q by p matrix, which can be known, unknown, 
or partly known. We assume that 6 is independent of x and 
c, although this can be relaxed to 6 and Y independent given 

P'x. An important case is when p = q and r equals the 
identity. 

We shall present some methods of estimating P, for p 2 2, 
up to a constant of proportionality without knowledge of the 
functional form of g. Similar to sliced inverse regression (Li 
199 l) ,  the key idea in our approach is to consider the inverse 
regression curve ~ ( y )  = E(w 1 Y = y). Theorem 2.1 shows 
that this curve will fall on a straight line under the following 
condition: For any direction b in RP,E(blxI PIX) is linear in 
B'x; that is, 

for some constants co, e l .  An important special case for (2.2) 
is when the distribution of x is elliptically symmetric. But 
as discussed in Li (199 l), (2.2) is much weaker than elliptic 
symmetry because it need be satisfied only by the vector P .  
See Remark 2.2 for more discussion. 

Theorem 2.1. Under (1. 1), (2. I), and (2.2), we have 

where the scalar function c(y) equals (P'Z,P)-lE(P'(x 
-Ex)lY = y). 

Proof: We can assume that Ew = Ex = 0. It may be 
shown that (2.2) implies that E(x  I P'x) = cl(P1x)Z,P, where 
cl (P'x) = ( ~ ' Z , ~ ) - l P ' x .Then, by conditioning, we find that 

where c(y) = E {el (P'x) 1 Y = y } . This proves the theorem. 
There are two ways to apply this theorem, as described in 

Sections 2.2 and 2.3. 

2.2 Linear Regression-Type Method 

Suppose that a standard linear least squares regression of 
Y against w is conducted: 

min E(Y - a - b ' ] ~ ) ~ .  
bIERq,uER (2.3) 

Then the regression slope bl satisfies 

bl = Z i l E Y  (w - Ew) = cZ;lrZ,@ 

If g(@'x, c) = a + P'x + c, then the constant c equals 1. 
The proof of (2.4) follows directly from Theorem 2.1. Now 

recall that 

Plugging (2.4) and (2.5) into the minimization problem (2.3), 
we see that P is proportional to the solution, bl,, of the fol- 
lowing : 

min E(Y - a - b ' ~ ) ~ .  (2.6)
bERp,uER 

This result can be viewed as an extension of Brillinger ( 1977, 
1983), when the usual linear least squares estimate was shown 
to be consistent for estimating the direction of the slope vector 
when the regressor variable is free of error. Li and Duan 
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(1989) extended Brillinger7s result to other regression esti- 
mates, including generalized linear models and Mestimates. 

2.3 SIR-Type Method 

Because the regression curve q(y) = E(w 1 Y = y) falls on 
a straight line, we can use the same method as SIR (Li 199 1) 
to suggest an estimate. It is more convenient for us to consider 
the curve {(y) = E(u 1 Y = y), where u is defined by (2.5). 
From Theorem 2.1 we find that 

{(Y) = E(u) + c(y)ZuB, (2.7) 

where, by (2.5), Z, = Zxr1Z;' r Z X  denotes the covariance 
matrix of u. Thus, in terms of u, the inverse regression curve 
is a straight line with the direction specified in a way exactly 
the same as in the regressor-error-free case discussed by Li 
(1991, Theorem 3.1). Denote the covariance matrix 
cov { {(Y ) ) by 2,. We can find the nondegenerate direction 
by applying a suitable principal component analysis, as the 
following corollary suggests. 

Corollary 2.1. Under the same conditions as given in 
Theorem 2.1, the covariance matrix Zf has rank at most 1. 
Assuming that Z, is of rank 1, let v be the nonzero eigenvector 
for the eigenvalue decomposition of Z, with respect to 2,: 
Z,v = XZuv, where X is the nonzero eigenvalue. Then v is 
proportional to 8 :  for some scalar c, v = cB. 

Note that the eigenvalue X = E[E {B1(x - Ex) 1 Y ) 2] 1 
B'ZUP. 

Remark 2.1. As mentioned previously, in (2.1) we re- 
quire only that conditional on B'x, the distribution of Y is 
independent of 13. 

Remark 2.2. Diaconis and Freedman (1984) showed that 
almost all low-dimensional projections of high-dimensional 
data are approximately normal. Hall and Li (1993) showed 
that from a Bayesian perspective, if ,6assumes a vague prior 
distribution, then as the dimensionality tends to co, (2.2) 
holds approximately with probability approaching 1. This 
implies that our assumption (2.2) is realistic for many high- 
dimensional data sets. On the other hand, if (2.2) is severely 
violated for some direction b, then it may be difficult to 
determine which direction in the space spanned by b and B 
is truly responsible for determining Y, given a realistic sample 
size. Li (1990a) demonstrated how SIR can help find the 
space spanned by the true direction B and the direction of 
b for which (2.2) is most severely violated. We expect a similar 
extension to our case; namely, the first two (or more, if nec- 
essary) eigenvectors of SIR may help recover the most severe 
nonlinearity in the design distribution. 

Remark 2.3. In the regressor-error-free case, there are 
some interesting methods that do not require the design con- 
dition (2.2) to estimate P consistently up to a constant of 
proportionality; see for example, the average derivative 
method of Hardle and Stoker (1989) and some variants of 
projection pursuit regression as given in Ha11 (1989) and 
Chen ( 199 1). These methods use the property that the re- 
sponse function E(Y Ix) depends on x only through B'x. 

Extension of these techniques to measurement error models 
would be of interest. 

Remark 2.4. A necessary and sufficient condition for 
the matrix Zf to be nonzero is that cov {h(Y ), B'x) # 0, for 
some transformation h( .).This holds for most models where 
E(Y I B'x) is strictly monotone or for heteroscedastic models 
such as Y = E -g(Brx). 

Remark 2.5. It is easy to see that each row of the linear 
transformation L is the regression slope vector for linearly 
regressing the corresponding coordinate of x against w, in- 
tercept included. In particular, the regression slope for the 
variable B'x against w equals Z;]cov(w, xtB) = LIB. There- 
fore, the variable @Lw = B'u has higher correlation with B'x 
than any other linear combination of w: corr(Btx, B'u) 
2 corr(@'x, b'w). 

Remark 2.6. If the joint distribution of x and w is nor- 
mal, we can extend the result of Li and Duan (1989) to the 
error-in-regressors problem by pretending that we have ob- 
served an error-free regressor u. Specifically, for any function 
p(Y, 6) that is convex in 6, under (1.1) the solution (a,, b,) 
of the minimization 

satisfies the condition that b, is proportional to B. The proof 
of this result is given in Appendix A. In fact, the normality 
assumption can be weakened by assuming (2.1) and that, 
conditional on B'u, B'x is independent of u. 

3. ESTIMATION 

Given an iid sample, (Y,, w,), i = 1, . . . , n ,  we discuss 
how to implement the two methods described in Section 2. 
As in (2.5), define 

We distinguish among four different situations: 

1. L is known. 
2. L is unknown and estimated by an independent vali- 

dation sample of (x,  w), which is assumed to be represen- 
tative in the sense that the covariance of x is the same in the 
primary and validation data sets. 

3. L is unknown, but p = q and I? is known in (2. l), so 
that L can be estimated by an independent representative 
sample containing replicates of w . 

4. Either independent validation or replication samples 
are taken, but they are not representative because the co- 
variance of x differs from that in the primary data set. 

The case where L is known is important primarily to set 
up the theory, although there may be situations where this 
case occurs. In addition, sensitivity analyses for different L's 
may be of interest when there is no additional information 
about the relationship between x and w. This case is treated 
in Sections 3.1 and 3.2. 

The use of validation is treated in Sections 3.3 and 3.4. 
We assume there and in Sections 3.5 and 3.6 that the in- 
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dependent data set is representative; one such example is 
discussed by Rosner et al. (1 989). 

In many instances, r may be known. This occurs especially 
when w is an unbiased estimate of x, the most common case 
occuning in the literature (Fuller 1987). For this important 
situation, to estimate L we show in Sections 3.5 and 3.6 that 
it is only necessary to have replicates w, I and w,2 of xi for 
some i. 

The general case of possibly nonrepresentative validation 
or replication is treated in Sections 3.7 and 3.8. We will 
consider only the case that the replicated data set is inde- 
pendent of the primary data set, although other cases are 
possible. 

3.1 Least Squares With Known L 

If L is known, define ui = Lwi. The least squares estimate 
for (2.6) is 

where 5, = L%~,L'is the sample covariance for u and 
is the sample covariance of w . Root n consistency and 

asymptotic normality of this estimate follows easily. Define 
the ith theoretical residual after regression: el = Yi - EY 
- bis(ui- Eu). Then we have the expansion 

n 


his = bls+ n-I 2 Z;lei(u, - Eu) + O,(n-I). (3.2) 
i= 1 

Clearly, hlSis asymptotically normal, with mean bls defined 
by (2.6) and covariance matrix 

3.2  SIR With Known L 

The SIR-type estimate can be constructed as in Li (1991): 

1. Divide the range of Y into H slices and let fib be the 
proportion of Yi's falling into the hth slice Ih. 

2. Within each slice compute the sample mean of u, iih 
= (nfih)-lZylEIhui, h = 1, . . . ,H .  

3. Form the covariance matrix 2c= Zf=]fih(iih ii)(iih 
- u)'. Then conduct an eigenvalue decomposition of Zc with 
respect to the sample covariance of u, 5,: 

where X is the largest eigenvalue. 
The asymptotic distribution of hSIRfollows from argu- 

ments similar to Li (1991) or Duan and Li (1991) for fixed 
H, and arguments similar to Hsing and Carroll (1992) for 
H = n / 2. The fixed H case is given in detail in Theorem 3.1 
below. 

Due to the affine invariance, we can without loss of gen- 
erality assume that Ew = 0. Recall the definition of c(y)  
from Theorem 2.1 and define k = [E  {c(Y ) I Y E I ,} ,  . . . , 
E ( c ( Y ) J Y E I H ) ] ' = ( k l , .. . ,kH) ' ,U=( i i l , .  . . , & ) , a n d  
D = a diagonal matrix with diagonal elements p^,, . . . ,$,. 
Then by the law of large numbers, the q by H matrix U 

converges to E U  = ZU@kr(more precisely, the expectation 
is conditional on fib # 0) at root n rate. Let A, = U - E U .  
Then 

It follows immediately that the largest eigenvector hsiris ap- 
proximately proportional to 

We can relate (3.5) to the least squares approximation 
(3.2) by considering the transformed variables Y ,  = kh if Yi 
falls in the hth slice; that is, 

H 

' l i j = Z t h ( i ) k h ;  [ h ( i ) = I ( Y , E h t h S l i ~ e ) .  
h=  1 

A straightfonvard derivation as outlined in Appendix B 
shows that (3.5) can be approximated by 

which would be equal to (3.1) approximately if we had trans- 
formed Y, to Yi. Therefore, we can apply (3.2) to our case 
with ei replaced by C, = Yi - EY, - b',,,(ui-Eu), where bsir 
is the regression slope of Y against u. Because (3.5) converges 
to krDk/3, we see that 

There is a slight ambiguity for the definition of the eigen- 
vector h,,, in Step 3, because any nonzero multiple of an 
eigenvector is also an eivenvector. Because we are using 
bsirto estimate the direction of @, it does not matter which 
version is used. 

Theorem 3.1. Under the same conditions as given in 
Theorem 2.1, the estimate dSiris root n consistent in esti- 
mating the direction of @. Moreover, there exists a version 
of hsirthat is asymptotically normal with mean bsir given by 
(3.7) and covariance matrix 

Remark 3.1. We can choose the version with unit 
length (with respect to Z, or the identity matrix, for example) 
and the largest coordinate value of which is positive. The 
asymptotic distribution for this version can be easily derived 
from Theorem 3.1 and the following lemma, which is proved 
in Appendix C. 

Lemma 3.1. For any sequence of random vectors, zi, 
such that n112(z, - p) converges to a normal with mean 
vector 0 and covariance matrix Z, the sequence of normal- 
ized random vectors n ]I2(zi/ 1 1  Z, /I - ]  - p/ /Ip I/ ) converges to 
a normal distribution with mean 0 and asymptotic covari- 
ance matrix /Ip 11 -2 p2Zp2, where P2is the projection matrix 
1- ( I1P I1 ) - 2 ~ ~ ' .  



- - 

1044 

3.3 	 Least Squares With Unknown L :  
Representative Validation 

Most often, L is unknown and has to be estimated. In this 
section we consider the use of an independent external val- 
idation sample of size m; that is, an independent data set 
consisting of the measurements (xi, wi), i = n + 1, . . . , n 
+ m .Typically, m is smaller than n .We will assume -for this 
purpose that x has the same covariance in the primary as 
well as the validation data; the case that it does not is covered 
in Section 3.7. 

We now study the effect on our estimates in (3.1) due to 
the uncertainty from estimating L .  We consider the estimate 
of L defined by 

Ai = COV(X,~ ) 2 ; ; ,  
(3'8) 

A
where cov(x, w) is the sample covariance between x and w 
and 2Zwis the sample covariance of w, all based on the val- 
idation sample (xi, wi), i = n + 1, . . . ,n + m. Each row of 

sponding coordinate of x against w. 
Denote iii= Lwi for i = 1, . . . ,n and define the associated 

sample covariance 

2" = L21wL'. 	 (3.9) 

We shall replace ui's by Gi's in constructing our estimates. 
The resulting estimates of /3 will be denoted by bIsand b,i,. 

The least squares estimate bls is obtained from (3.1) by 
replacing ui by 8,: 

n 

bl, = e;l(n - 1)-I 2 Yl(iii- 5),  

where 5 denotes the sample mean of GI's. A standard ex- 
pansion shows that, no matter how L is estimated, 

is the usual least squares regression slope of the corre- ,!, 
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Theorem 3.2. The asymptotic covariance matrix of bl, 

is given by 

z ( ~ I , >= cov{I(b~s)}+ ~(61,) ,  

where Z( 61s) is given by (3.3) and 

cov{Z(bls)) = m - ' c o v { ~ ; ~ ( u ~~ u ) ( r ~~ r , ) b i , }  

3.4 	 SIR With Unknown L :  Representative 
Validation 

After estimating L by L ,  the SIR-type estimate can be 
carried out in the same way as described in Section 3.2. The 
matrix 2rwill be replaced by 

where 
H 

2, = 	2 bh(Wh- W)(WA- W)', (3.14) 
h =  1 

and where Wh is the slice mean for w, (neh)-l CYiEIhwi. The 
maximum eigenvector of the eigenvalue decomposition 2r 
with respect to 2, [see (3.9)] is our estimate &,. We shall 
find the asymptotic distribution for b,,, as follows. 

First, following the same derivation as the one that leads 
to (3.4), we obtain 

2 = kfdk{rZX/3+ ( k ' d k ) - l ~ , ~ k }  

x {rZ,B + ( k ' d k ) - l ~ , d k } ~ ,  

where A, = (Wl - EWl, . . . , WH - EWH). Based on this, 
from (3.13) we approximate erand find that one version of 
the eigenvector bsi,approximately equals 

Following an argument similar to (A.2), we can approximate 
(3.15) by 

- z ; l~zw(L  - L)'bls + O P ( ~ - '+ m - l ) .  (3+10) Comparing (3.16) with (3.12), we see that, asymptotically, 
Now let 

r .  = xi - u = x .  - Lw: ArWi= (ri  - Eri)(wi- Ew)'.I I 

A standard expansion for least squares gives 
n+m 

,? - L = m-I 2 ArWiZ;l + OP(m-I). 
i=n+ 1 

Hence we obtain the expansion 

(3.11) 


Note that the last two terms are independent. It is now clear 
that blsis consistent. Compared with (3.2), we see that the 
cost of estimating L is the presence of the second term in 
(3.12) from the validation sample. 

bsi,would be equivalent to the least squares estimate of Sec- 
tion 3.3 if we had transformed Yi to k i .  Hence we can apply 
Theorem 3.2 to obtain the asymptotic distribution of bsi,. 

Theorem 3.3. There exists a version of bSi, with the 
asymptotic mean bsi, given by (3.7) and the covariance matrix 

~(bs i r )= cov{~(bsir)}+ ~(6sir>,  

where ~ ( 6 , ~ ~ )  is given in Theorem 3.1, and cov {Z(bSi,)} is 
the same as the term cov { I(bl,)} given in Theorem 3.2, with 
bl, replaced by b,i,. 

Remark 3.2. Note that the term cov { I(bsi,)} (respec-
tively, cov { I (  bl,) } ) is the asymptotic covariance matrix for 
the estimated slope when we regress bki,x (respectively, 
bi,x) against u based on the validation sample, if bSi, (re- 
spectively, bl,) were known. Thus the additional uncertainty 
in our estimate due to estimating L is easy to assess. This 
information may be particularly useful in planning of the 
sample sizes m and n. 
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Remark 3.3. In Theorem 3.3 we assumed that the slices 
are fixed. In practice it is more convenient to choose ap- 
proximately the same number of observations for each slice, 
unless Y is discrete. This makes our procedure invariant un- 
der monotone transformations of Y.  The case where H in-
creases as the sample size increases (in particular two obser- 
vations per slice) can be treated using the methods of Hsing 
and Carroll (1992). 

3.5 	 Least Squares With Unknown L :  
Representative Replication 

An important special case occurs when F is known and p 
= q.  Without loss we will take r = I ,  in which case w is an 
unbiased surrogate for x.  In many experiments, instead of 
validation we will have a replicated data set; that is, 

If Za is the covariance of 6,, then we find that L = I 
- Z6Zi1 .  Define 26and 2, - (1 /2)2, to be the sample co- 
variance matrices of (wi - wi2)/2lI2 and (wi + wi2)/2 and 
define 

L = 1 - 3 2 - 1 .6 w 	 (3.18) 

Then, while we prefer the method of Section 3.7, all the 
results of Section 3.3 hold if we replace A,,, by 

3.6 	 SIR With Unknown L :  Representative 
Replication 

In the replication model (3.17), with the estimate (3.18), 
the results of Section 3.4 go through with the only change 
that A,,, is replaced by (3.19). 

3.7 	 Least Squares With Unknown L :  General Case 

Formula (2.5) refers to the primary sample. In many 
problems the classical additive measurement error model 
(2.1) can be assumed to hold both for the primary and the 
validation /replication data sets, with the same values of (7, 
r )  and the covariance matrix of 6; see Carroll (1989) for 
discussion. But there are important instances where the 
marginal distribution of x is not the same in the primary 
and validation/replication data sets, in which case adjust- 
ments must be made. Thus we will estimate (r,Z6) from 
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In the case of validation, A, = 6,s: - Z,. For replication, A, 
= ai,6:, - Z6, where ai, = (wil - wi2)/2Il2. 

Now define L = 3,re;;, where 3, = f i - ' f i (3, ,  
-2,)ff i - l .  For i = 1, . . . ,  n define si = (wi - Ew)(wi 
- EW)' - z,, 1, = 	 - Ls,z;~and~ - l r ~ s , r a - ~ r ~ z ; l  

A ,  = Z i l  {(u, - Eu)ei - LZ,I:bls}. 

For i = n + 1, . . . , n + m, under replication with r = I 
define 23, = 0; for validation define 23, = 2;' (xi - Ex)&) .  
Further define 

and A ,  = Z;lLZ,~:bls. Then calculations outlined in Ap- 
pendix D show that 

Equation (3.20) allows us to state the following result: 

Theorem 3.4. hl, is asymptotically normally distributed 
with mean bls and covariance matrix 

3.8 	 SIR With Unknown L :  General Case 

This may be treated in the same way as in Section 3.7; 
replace bls by bsi, and replace Yi by pi. 

4. STATISTICAL INFERENCE 

We shall show how to apply the results of Section 3 to 
hypothesis testing for null effects. Hypothesis testing has not 
been much discussed in the nonlinear measurement error 
model literature. An exception is the case of testing for a 
simultaneous null effect in all components of x measured 
with error, where score test ideas can be used (see Stefanski 
and Carroll 1990; Tosteson and Tsiatis 1988). These methods 
do not apply for testing components of x which are measured 
precisely; see Carroll (1989) for examples. We can handle 
such problems using the techniques presented in Section 3. 

Consider the hypothesis testing problem of the form 

where M is a given r by p matrix of rank r p. For instance, 
if we take M = (1, 0, . . . ,0), then r = 1 and we are testing 
whether or not the first variable in x affects the response Y.  
Let 6 denote any estimator constructed in Section 3. To 
construct a Wald test for the hypothesis, we need a consistent 

the asymptotic covariance of 6. For 
data set to estimate Z,. the least squares estimates of Sections 3.1, 3.3, 3.5, and 3.7, 

Assume that D = I'll? is of full rank. Then Z, = D-~~"(z ,  is easy: just substitute popu- 

the validation/replication data sets and then use the primary estimate 2(6)  of ~ ( 6 ) ~  

consistent estimation of ~ ( 6 )  
- Z6)FD-l. If I' is unknown, let f be the least squares es- 
timate; otherwise, set = r .  Let 3, be an estimate of Z,, 
which we will assume to have the expansion 

lation quantities by their estimates. The only point that needs 
a little special care is that in going from the population ver- 
sions to sample versions, terms of the form wi I -wi2 should 
be replaced by w, - w,2 - m-I 2 El (wk I - wk2). 

For the SIR estimates of Sections 3.2, 3.4, 3.6, and 3.8, 
the same technique works once one estimates the vector k 
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= (k , ,  . . . ,kH)'. TO do this, multiply both sides of (2.7) by 
pr, so that 

C(Y)= (PtZuP)-'Pt{ {(Y) - E(u)} ,  

from which it follows that kh = E{c(Y) I Y E Zh} 
= (prZuP)-1/3'{Eiih- E(u)} .  Hence we can estimate kh by 

kh = (b~ir2ubsir)-1b~ir(5h- 61, 

where Bh denotes the hth slice mean for 6,'s. It is also 
easy to see that krDk can be estimated by k 'dk 
= i(&irSub,ir)-I. 

The Wald test at level a rejects the hypothesis if 

where x f (1  - a )  is the appropriate percentage point of the 
chi-squared random variable with r degrees of freedom. 

5. GENERALIZATIONS 

The method based on SIR is easy to generalize to other 
settings. First, instead of (1.1) we may consider a model 

where T is a stratification variable such as sex or age group, 
so that g can be an arbitrary function with three arguments. 
We assume that the design distribution satisfies the linear 
conditional expectation condition (2.2) after conditioning 
on T; namely, for any direction b in RP,there are functions 
o fT ,  co(T),  c l ( T ) ,  suchthat 

It is clear that the inverse regression curves, q(y I T )  = E(w I Y 
= y, T )  and {(yl T )  = E(ulY = y, T ) ,  still have the same 
property as given in Theorem 2.1 and (2.7) : 

~ Y T )  = E(u  I T)ZUITP, (2.7')I T )  + ~ ( Y I  

where c(yl T )  = (prZxITp)-lE (P t (x- Ex) 1 Y = y, T )  and 
Zx,  is the conditional covariance of x given T. Thus, when 
creating slices, we need to use both Y and T. We can estimate 
/3 from each stratum of T and then combine the estimates. 

Under the additional assumption that Z x I  does not de- 
pend on T, we can combine the estimate of the covariance 
Z< from each stratum: 

where fib,!is the proportion of the cases falling into slice h 
at stratum T = t ,  Uh,! is the sample average of u for T = t 
and slice h ,and ifis the sample average of u for T = t .Then 
we can estimate /3 by the largest eigenvector of this matrix 
with respect to Z, as before. The asymptotic property will 
be similar to what was discussed earlier. The result of Hsing 
and Carroll (1992) can be used to justify the consistency 
property of the resulting estimate even if the number of cases 
per slice is small. 

Another generalization is to consider the K component 
model (1.2). We can use the largest K eigenvectors of SIR 
(Step 3 of Section 3.2) to estimate the space spanned by the 
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P's. We can justify our method based on the generalization 
of (2.7): q(y) - E ( u )  falls into the space spanned by ZuP1, 
. . . , ZUPK. The proof of this result follows along the same 
lines as the proof of Theorem 3.1 of Li (199 I), incorporating 
the crucial property that E(6 IY = y, x) = E(6)  = 0 as used 
in the proof of our Theorem 2.1. 

6. DATA VISUALIZATION 

Quite often a visual inspection of the data can lead to a 
suitable follow-up analysis, such as suggesting the functional 
form ofg in (1. l), the detection of outliers, clustering analysis, 
and heterogeneity. When regressors are error free, one ap- 
proach to visualizing regression data is based on regression 
diagnostics (Cook and Weisberg 1989). Alternatively, Li 
(1990a, 1990b, 199 1) formed a framework for addressing 
this visualization issue, based on dimension reduction theory. 
He suggested SIR and several versions of principle Hessian 
direction (pHd) (Li 1990b) for accomplishing this goal. 

When regressors are subject to error, even when x and w 
are scalar, plots of Y against w might give misleading infor- 
mation about the regression slope (or functions) of Y against 
x (Fuller 1987; Spiegelman 1986). This can be the case even 
if the measurement error is small (Carroll and Stefanski 
1990). Despite these possibilities, in many instances curva- 
ture in E (Y I w) does reflect curvature in E(Y I x), and plot- 
ting Y against w may still be valuable. This section presents 
a theory for informatively visualizing the data when regres- 
sors are subject to error. 

When x is observable, the best viewing angle is prx under 
(1.1). But because x is not available, we can at best find a 
projection on w so that the projected variable has the highest 
correlation with Prx to ensure the best viewing angle obtain- 
able from w; that is, the one closest to the best view from x. 
From Remark 2.4 at the end of Section 2, we see that Pru, 
or its scalar multiple, is the desired variable. Because we can 
estimate the direction of p by 6 ,  which denotes any estimate 
obtained earlier, we suggest plotting Y against bru. If the 
correlation between prx and Pru is high, then our plot may 
be useful-for instance, in suggesting the appropriate func- 
tional form in (1.1). When a validation sample of (x,  w) is 
available, we can use it to estimate corr(pfx, P'u) by con- 
sidering the sample correlation between Brx and p'u. 

The following is a simulation example to see how effective -
our method is. We consider two models for generating the 
data: 

and 

The first model falls into the Box-Cox transformation family; 
for the second model the transformation is taken only for 
the mean response function, a special case of a "transform- 
both-sides" model considered by Carroll and Ruppert (1988; 
cf. our Remark 6.1). The coordinates of x and c are inde- 
pendent standard normal random variables. We set the di- 
mension parameters as p = 6 = g, the primary sample size 
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Table 1. Summary of b,,, = (b l ,  . . . ,6,)' for Model (6.1) 

Number of slices 6, 6 2  6 3  6 4  65 6 6  cos(x) corr(w) 

NOTE: Standard devlatlon and minimum are In parentheses and brackets. 

as n = 200, the validation sample size as m = 100, and @ 
= (1, 1, 1, 0, 0, 0)', a = 4. The relationship between w and 
x will be governed by the linear model (2. l ) ,  with p = q = 6, 
I' = I. The distribution of 6 is normal with mean 0 and 
covariance being a diagonal matrix with diagonal element 
(0, 1 /3, 1 / 3, 113, 1 / 3, 1 / 3). Thus each coordinate of x, 
except for the first one, is contaminated by an error of a size 
equal to .577 of its standard deviation. 

Because our procedure does not require knowledge of the 
functional form that generates the data, we can apply it to 
both (6.1) and (6.2). After 100 simulation runs, we sum- 
marize the results for bsi, in Tables 1 and 2. Because we are 
interested only in estimating the direction of /3, we have 
standardized our estimate to have unit length. For each 
model the mean of bSi,is very close to the theoretical value 
(.577, .577, .577, 0, 0, 0)' = 01 IIPll. This demonstrates that 
our procedure can avoid the bias that one normally would 
expect to see without proper model specification. For in- 
stance, the naive estimate of regressing the square root of Y 
against w for data generated by (6.1) gives the slope (1, .75, 
.75,0,0.0) '  on average, which is not proportional to /3. The 
standard deviation of our estimate is reasonably small com- 
pared, for instance, to the ideal value of .07 -- 1/ G,the 
standard deviation of the least squares estimate for /3 under 
(6.1) if the square transformation were known and if x were 
observed without errors. The cosine of the angle between 
bsi, and /3, which is the same as the correlation coefficient 
between bki,x and P'x, is very close to 1, with the lowest 
value in the neighborhood of .95; see the next to the last 
column in each table. We considered three choices of the 
number of slices H = 5, 10, 20, with an equal number of 
observation per slice. This illustrates the stability of our pro- 
cedure in regard to the change in H a t  least for this example. 

Now to demonstrate the application of our method to 
data visualization, a single additional run is taken. For this 
realization, we found that bsi, = (-.54, -.64, -.53, -.03, 

-.09, -.01)' for model (6.1) and (-.57, -.58, -.56, .04, 
-.03, -.00)' for model (6.2). The estimate of the transfor- 
mation L is as follows: 

/ .OoO O o O  .OoO .OoO .OoO\ 

Then we compute b',irii,= (,!,b,,,)'w,for i = 1, . . . ,n .  The 
scatterplots of Y, against b',i,iiiare given in Figures 1 and 4, 
for models (6.1) and (6.2). These plots suggest that analysis 
based on transformation is reasonable to pursue further. 

In Figures 2 and 5 we plot Y, against /3'u,, the best view 
on Y from the surrogate variable if L and /3 were known. 
Compared to what we had seen in Figures 1 and 4, we see 
that very little has been lost due to the estimation. The cor- 
relation between the variable /3'u and our estimated variable 
B'u is as high as .99. The last column in each of Tables 1 
and 2 gives the mean and the lowest possible value of this 
correlation over the same 100 simulation runs done earlier. 
The lowest number is still as high as .95. This suggests that 
approximately the same view would be obtained from other 
simulation runs. 

We also provide plots of Y, against P'x, in Figures 3 and 
6, the best view of the models from the uncontaminated 
regressor. We find that the views obtained by our estimate, 
Figures 1 and 4, are also very close to these best views. This 
can be attributed to the fact that for our parameter setting, 
despite the apparent heavy contamination rate, the corre- 
lation between p'x and p'u is high, equaling to about .9 1. 
Figures 3 and 6 are supposed to be close to Figures 2 and 5, 

Table 2. Summary of b,,, = (b,, . . . , 6,)' for Model (6.2) 


Number of slices 61 62 63 6 4  66 66 cos(x) corr(w) 


NOTE: Standard dev~ation and mlnlmum are In parentheses and brackets. 
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wFigure7. SIR'S View for Model (6.1). 

which in turn have been shown to be similar to Figures 1 
and 4. 

If we have a small number of additional data points avail- 
able on (Y, x) ,  then we can plot Y against b'x as well. To 
illustrate this, we generate 10 new data points for (Y, x )  
from (6.2). The plot is given in Figure 7, which shows a 
quadratic trend well. 

Remark 6.1. Carroll and Ruppert (1988) considered the 
transform-both-sides model, which allows another transfor- 
mation on Y before getting a model like (6.2). Because our 
procedure is invariant under the monotone transformation, 
we would have obtained the same estimate if our data had 
been given after applying any unknown monotone transfor- 
mation to Y in mode1 (6.2). 

Remark 6.2. When studying the plot of Yi against 
b~~,ii,,it is worthwhile to pay some attention to the inverse 
regression curve; namely, smoothing b',i,iii against Yi. This 
is because from Theorem 2.1, the curve E(B1u IY = y) is an 
affine transformation of the curve E(B1x IY =y). This curve 
is particularly helpful if the data are indeed generated from 
a model Y = g(B1x) + E, with the standard deviation of E 

being small enough so that we can approximate E(j3'xl Y 
= y) by g-' ( y). The smoothed inverse regression curve is 
expected to be close to the inverse of g. We can use the 
inverse of the smoothed inverse regression curve to suggest 
a suitable functional form for g. 

Remark 6.3. If a were set at 0, then we cannot estimate 
the direction of j3 well because the theoretical inverse regres- 

Figure 3. Best View on (6.1) From x .  

sion curve will degenerate to a point. Similar to the regressor- 
error-free case, there are several variants of second-moment- 
based SIR or pHd methods (Li 1990b) available for remedy. 

7 .  THE CONSTANT OF PROPORTIONALITY 

As mentioned previously, when g is completely unknown 
we can at most identify B up to a constant of proportionality. 
We could use the data visualization technique as discussed 
in Section 6 for suggesting a reasonable functional form. On 
the other hand, if g is given, then we shall discuss how to 
estimate the entire B based on the reduced data. 

Let 6be the vector to which any of our estimates 8con-
structed in Section 3 converges. We have shown that y 6  = ,13 
for some constant y. Let z = P x .  Then we can write (1.1) 
as Y = g ( a  + yz, E). Our job now is to estimate ( a ,  y ) .  Let 
7 = P u .  AS discussed in Section 6, 7 is in a sense most 
informative in predicting z. We can consider r to be the 
surrogate for z. 1f6 were estimated without error, then based 
on the primary sample (Yi, r i ) ,  i = 1, . . . ,  n and the vali- 
dation sample (zi, T,), i = n + 1, . . . .  n + m ,  where ri 
= @ui and zi = @'xi, we could apply many available tech- 
niques, such as the parametric method of Carroll et al. (1 984), 
the semiparametric method of Stefanski and Carroll (1987), 
the small measurement error asymptotics of Stefanski and 
Carroll (1990), and the nonparametric kernel regression 
method of Carroll and Wand (1 990). We suggest that after 
estimating 6 by 8 ,  we construct ?i = bliiiand ii= ofxi to 
replace T ~ ,  z, and apply any of these methods. Further work 
on this suggestion is necessary. 

Figure 2. Best View for (6.1) From w .  Figure 4. SIR'S View for Model (6.2). 



Carroll and Li: Measurement Error Regression 

Figure 5. Best View for (6.2) From w .  

8. EXAMPLE 

We have access to a restricted data set containing breast 
cancer incidence Y and x = (age, body mass, nutrient intake), 
the latter in this case being the logarithm of saturated fat. 
The primary data set was of size n = 2,800, and the validation 
data were of size m = 650. The fallible version of nutrient 
intake was assessed in the study by an interview detailing 
the previous day's diet; the version of truth used here was 
the average of three such interviews. The measurement error 
is quite large, with fully more than 50% of the observed vari- 
ability in fat in error. All measurement error analyses of 
these data performed previously have shown a large age effect 
and a negligible body mass effect. Some analyses show a 
significant effect due to the nutrient intake, and others do 
not; in all cases, the coefficient has been negative. For pur- 
poses of this numerical illustration, we will assume repre- 
sentative validation. Full details will be provided elsewhere. 
If for no other reason that there were only 59 reported cases 
of breast cancer in this study, the results should be treated 
with extreme caution. 

Programming the methods discussed in this article is very 
easy. This is particularly the case for binary regression, be- 
cause the least squares and SIR methods discussed in Section 
3 yield identical estimates of /3, in terms of unit length. In 
this example the ordinary logistic regression estimate of unit 
length obtained from regressing Y on w was (.97, -. 12, -.20), 
with two-sided significance levels (.00, .68, .06). Our methods 
yielded estimates (37 ,  -.14, -.47), with two-sided signifi- 

Y 

Figure 6. Best View for (6.2) From x. 

Figure 7. SIR'S View for (6.2) From New ( y ,  x).  

cance levels (.00, .64, .02). Note that this measurement error 
analysis yielded a larger estimated relative effect due to the 
nutrient than did the ordinary logistic regression. The dif- 
ference in statistical significance for the saturated fat coef- 
ficient may be due to the use of information standard errors 
for the ordinary logistic analysis; an analysis using M esti-
mator techniques to construct standard errors yielded lower 
significance levels. For example, if we assume that given ob- 
served fat, the true fat is independent of age and body mass 
(checked by a linear regression analysis), then the method 
of Rosner et al. (1989) applied to these data yielded estimates 
( .9 1, -. 1 1, --40) and significance levels ( .00, -64, .0 1). 

APPENDIX A: PROOF OF FISHER CONSISTENCY IN 

CONVEX REGRESSION, REMARK 2.6 


We use the conditional argument similar to that for the proof of 
Theorem 2.1 in Li and Duan (1 989). For any b E RP, by Jensen's 
inequality we shall have 

Ep(Y, a +  b'u) = E [ E { p ( Y ,a +  b1u)jP'x,c,P'u}] 

r E [ p { Y ,a + E(bluIP'x, P 'u)}]  

= E [ p { Y ,a + E(b1ulp 'u)}]  

= E { P ( Y ,a + co + clP1u)} ,  

for some real numbers co, cl . 

Here the second to last equality is due to the fact that given P'u, u 
is independent of P'x, a consequence of the joint normality of x 
and w. It is now clear that a minimizer can be found along the 
direction of P ,  proving our claim. 

APPENDIX B: APPROXIMATION OF (3.5) BY (3.6) 

Recall that A, = 0 - E u .  The term inside the parentheses of 
(3.5)can be written as 

Comparing this with (3.6),it remains to show that (n- '  C:=l ~ , ) i i  
is of the order OJn-I). But this follows directly from our assumption 
that Eu = LEw = 0 and the fact that 

where the last equality follows from Theorem 2.1. 



1050 Journal of the American Statistical Association, December 1992 

APPENDIX C: PROOF OF LEMMA 3.1 

Let zi = p + ei. Then it follows that 

It is now easy to  see that Lemma 3.1 holds. 

APPENDIX D: PROOF OF (3.20) 

Define 

A = (6-I - n-I)r1(zw- z6)rn-I 

= -n-'(6 - n)z,+ O,(n-'), 


B = n- ' ( f- r)l(zW- z6)rn-I= n - l ( f  - r)'rz,, 

and  

A + B = -n-Ir1(f- r)z,+ ~ , ( n - ' ) .  

Then 

2, - z, = ( A  + B )  + ( A  + B)' + ~ - ~ r ~ ( 2 , ,z,)rn-I-

- ~ - I r ' ( 2 ~z6)rfi-I.-

Hence 

L - L - z,)rn-]r1= [ { ( A+ B )  + ( A  + B ) ' )r1+ ~ - ~ r ~ ( % , ,  
- Q - ' F ' ( ~ ~- z6)rn-Ir1+ zx( f- r)! 

The proof now follows from (3.10). 

[Received October 1990. Revised December 1991.1 
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